
cockatiel Documentation
Release 0.0.2

Raphael Michel

July 02, 2016

Contents

1 Features 3

2 Documentation content 5
2.1 Using cockatiel . 5
2.2 Design decisions . 6
2.3 HTTP API . 7
2.4 Contribution guide . 9
2.5 Code of Conduct . 11

HTTP Routing Table 13

i

ii

cockatiel Documentation, Release 0.0.2

Cockatiel is a replicating file server for small-scale setups. It is intended to be used e.g. for handling user-uploaded
files to a web application in a redundant way.

Contents 1

cockatiel Documentation, Release 0.0.2

2 Contents

CHAPTER 1

Features

• Uploading and deleting files

• Asynchronous replication across multiple nodes

• Automatic failure recovery

3

cockatiel Documentation, Release 0.0.2

4 Chapter 1. Features

CHAPTER 2

Documentation content

2.1 Using cockatiel

2.1.1 Requirements

• cockatiel requires Python 3.4 or newer

• cockatiel has only been tested in Linux so far

2.1.2 Installation

Installing cockatiel is really straightforward. We recommend that you set it up inside a virtual environment in order to
isolate its dependencies from other python projects that you might use. Inside the Python 3 virtual environment you
can then just run:

$ pip install cockatiel

to obtain the latest release.

Warning: Before using cockatiel for your project, please make sure that you read and understood the Assumptions
that cockatiel makes about your requirements.

2.1.3 Command-line options

Cockatiel is currently configured via command-line parameters. Logging is performed via stdout.

Simple replicating file storage.

usage: python3 -m cockatiel [-h] [--port PORT] [--host HOST] --storage PATH
--queue PATH [--url URL] [--node URL]
[--proxy URL] [-v]

Options:

--port=8080, -p=8080 The port that this cockatiel server should bind to.

--host=0.0.0.0, -H=0.0.0.0 The IP address of the interface that this cockatiel server should listen
on.

5

http://docs.python-guide.org/en/latest/dev/virtualenvs/

cockatiel Documentation, Release 0.0.2

--storage The path to the directory to store the actual files in. The cockatiel process
needs permission to read and write files and create new subdirectories at
this location.

--queue Path to a directory to store the retry queue. The cockatiel process needs
permission to read, write and delete file at this location.

--url= The URL this service is publicly reachable at, e.g. http://10.1.1.1:8123/foo
or https://mydomain.com/media, depending on your reverse proxy setup.

--node Specify this option once for every other node on your cluster. Every value
should be a valid URL prefix like http://10.1.1.2:8012

--proxy= Use a HTTP proxy for outgoing connections. This is not recommended to
use and is mainly used internally during testing to simulate flaky networks.

-v=False, --verbose=False Enable debugging output. Without this flag, only errors and warn-
ings are logged.

2.1.4 Running cockatiel as a service

To automatically run cockatiel at system startup, you can register it as a system service.

TBD systemd example

2.1.5 Adding new nodes to the cluster

If you’re system is growing and you’d like to add a new node to the cluster, you’ll need to go through the following
steps in the given order:

1. Set up and start cockatiel on the new server, including all existing servers in its cluster configuration.

2. Add the URL of the new server to the cluster configuration on all other nodes, then restart those nodes.

3. Manually copy over the complete storage directory from one of the existing nodes to your new node, e.g. using
rsync.

2.1.6 Using cockatiel for a Django application

We have a Django storage backend for cockatiel available at django-cockatiel.

2.2 Design decisions

Cockatiel doesn’t try to be a CDN, but to implement the simplest solution that fulfills our needs. Currently, cockatiel
makes a number of assumptions that are outlined below. If those assumptions do not apply to your needs, you should
probably be looking for a CDN-like solution or for a proper distributed file system or block device.

2.2.1 Assumptions

All files are on all servers. Cockatiel currently does not implement any kind of sharding and we do not plan to do so,
so Cockatiel is designed for file collections that can easily fit on a modern hard drive.

6 Chapter 2. Documentation content

https://github.com/raphaelm/django-cockatiel

cockatiel Documentation, Release 0.0.2

File names will be (partly) auto-generated. In order to avoid collisions, cockatiel will insert a file’s SHA1 checksum
and the current timestamp into the filename. Therefore, the file will not be stored exactly at the location the client
specified. Please note that this might disclose when the file was created.

Files get replicated asynchronously. If your network connection is slow or flaky, this can lead to a delay between a
file being on one server and a file being distributed across all servers.

Files don’t change. It is not possible to change a file through cockatiel. If you want to replace a file, just delete the
old one and upload a new one that will get a new name (due to the checksum that will be inserted into the filename).

Adding or removing nodes may require manual intervention. There currently is neither automatic service discov-
ery nor cluster configuration management during runtime.

Files are being served by a different webserver. Cockatiel does not intend to be a high-performance web server. If
your files get accessed a lot, please use a proper web server like nginx and point it to the cockatiel’s storage directory.

2.2.2 Implementation

• cockatiel is a stand-alone service implemented in Python using asyncio.

• The service exposes a very simple HTTP API that is used both for the communication between a client and the
service as well as for the replication between the cockatiel nodes.

• Every operation gets inserted into a queue. This queue is persisted to a directory on the file system. An operation
stays inside the queue as long as it has not been accepted by all neighbor servers.

• In order to resolve conflicts between creations and deletions, we keep a log of all files deleted recently and any
node will not accept replications for a files in this log. Due to the time-based filenames, we can safely assume
that a file won’t be re-uploaded with the same name after it has been deleted.

2.2.3 Failure modes

cockatiel is currently designed to automatically cope with the following events:

Server downtime: If one node of the cluster goes offline, the other servers will queue up all operations and retry them
periodically. The retrial interval is currently configured to increase from twice a second two once every 30 seconds
if the server is down for a longer period. Therefore, once the server returns, the other servers will start pushing all
changes within 30 seconds.

Network corruption: If a file arrives corrupted after a replication, e.g. the calculated SHA1 sums of the sender and
the receiver mismatch, the operation will be aborted and retried.

Network partition: If you have three nodes A, B, and C, and the network between A and C gets interrupted, an
operation performed on A will still be propagated to server C.

Connection interruption: Any operation stays queued for replication as long as the receiving server did not acknowl-
edge it. Therefore, if an operation is interrupted, it will be retried.

2.3 HTTP API

Cockatiel exposes a HTTP API that you can use to store, retrieve and delete files from its storage. The same API is
being used by cockatiel for the communication between different nodes.

2.3. HTTP API 7

cockatiel Documentation, Release 0.0.2

2.3.1 API methods

GET /(filename)
Returns the file with the given filename.

Request Headers

• If-None-Match – A value that you obtained from the ETag header of a response that you
still have in your cache.

Response Headers

• Content-Type – The content type of a file, determined by its extension

• ETag – A hash value specific to this file. You can specify this in the If-None-Match
request header for cache validation.

• Cache-Control – Cache control instructions, normally telling you that you can cache this for
at least a year.

• X-Content-SHA1 – The SHA1 hash of the transmitted file

Status Codes

• 200 OK – if the file exists and can be read

• 304 Not Modified – if you provided If-None-Match

• 404 Not Found – if the file does not exist

• 500 Internal Server Error – on any internal errors

PUT /(filename)
Creates a new file with the given filename. You are not guaranteed that the file is actually created with the given
name, you should expect to get a new name in the Location response header.

Request Headers

• X-Content-SHA1 – The SHA1 hash of the transmitted file (optional)

Response Headers

• Location – The relative or abosulte URL to the file with the name that acutally has been
used when storing the file.

Status Codes

• 201 Created – if the file did not exist on this server before

• 302 Found – if the file already existed on this server previously

• 400 Bad Request – if you specified a SHA1 hash and it does not match the hash calculated
on the server

• 408 Request Timeout – if data is coming in to slow

• 409 Conflict – if the file is known to be already deleted

• 500 Internal Server Error – on any internal errors

DELETE /(filename)
Deletes the file of the given name.

Status Codes

• 200 OK – if the file could be deleted successfully

• 404 Not Found – if the file did not exist

8 Chapter 2. Documentation content

http://tools.ietf.org/html/rfc7232#section-3.2
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://tools.ietf.org/html/rfc7231#section-2.3
http://tools.ietf.org/html/rfc7234#section-5.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://tools.ietf.org/html/rfc7231#section-7.1.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

cockatiel Documentation, Release 0.0.2

• 500 Internal Server Error – on any internal errors

HEAD /(filename)
Returns the meta data for the file with the given filename. This behaves exactly the same as GET, it just does not
return the file’s content.

Request Headers

• If-None-Match – A value that you obtained from the ETag header of a response that you
still have in your cache.

Response Headers

• Content-Type – The content type of a file, determined by its extension

• ETag – A hash value specific to this file. You can specify this in the If-None-Match
request header for cache validation.

• Cache-Control – Cache control instructions, normally telling you that you can cache this for
at least a year.

• X-Content-SHA1 – The SHA1 hash of the file

Status Codes

• 200 OK – if the file exists and can be read

• 304 Not Modified – if you provided If-None-Match

• 404 Not Found – if the file does not exist

• 500 Internal Server Error – on any internal errors

GET /_status
Returns status information on this node. This currently includes a dictionary that contains one dictonary for
every neighbor node. This inner dictionary contains the current length of the replication queue, i.e. the number
of operations known to this node that have not yet been sent to the respective other node.

Example response:

{
"queues": {

"http://localhost:9001": {
"length": 4

}
}

}

Status Codes

• 200 OK – in any known case

2.4 Contribution guide

You are interesting in contributing to Cockatiel? That is awesome! If you run into any problems with the steps below,
please do not hesitate to ask!

If you’re new to contributing to open source software, don’t be afraid of doing so. We’ll happily review your code and
give you constructive and friendly feedback on your changes.

2.4. Contribution guide 9

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://tools.ietf.org/html/rfc7232#section-3.2
http://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://tools.ietf.org/html/rfc7231#section-2.3
http://tools.ietf.org/html/rfc7234#section-5.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

cockatiel Documentation, Release 0.0.2

2.4.1 Development setup

First of all, make sure that you have Python 3.4 installed. We highly recommend that you use a virtual environment
for all of the following, to keep this project’s dependencies isolated from other Python projects you might use or work
on.

To get startet, first of all clone our git repository:

$ git clone git@github.com:raphaelm/cockatiel.git
$ cd cockatiel/

The second step is to make sure you have a recent version of pip and all our requirements:

$ pip install -U pip
$ pip install -Ur requirements.txt

There is no third step :)

2.4.2 Running the software

Running the cockatiel server is as easy as executing:

$ python3 -m cockatiel

within the root directory of the repository.

2.4.3 Running the test suite

Cockatiel’s tests are split up into two parts. The unit tests are testing single, isolated components of the codebase,
the functional tests are performing end-to-end tests of the API and they run tests on whole simulated cluster setups.
Therefore, the unit tests tend to run really fast while running the functional tests might take a longer period of time.
You can run them with the following commands:

$ py.test unit_tests
$ py.test functional_tests

While working on the project, it may come useful to run only part of the test suite. You can either specify a specific
test file or even filter by the name of the test:

$ py.test unit_tests/test_queue.py
$ py.test functional_tests/test_queue.py -kdelete

2.4.4 Building the documentation

To build the documentation as HTML files, you need to issue the following commands:

$ cd docs/
$ make html

You can then point your browser to <repo-path>/docs/_build/html/index.html.

10 Chapter 2. Documentation content

http://docs.python-guide.org/en/latest/dev/virtualenvs/

cockatiel Documentation, Release 0.0.2

2.4.5 Sending a patch

If you improved cockatiel in any way, we’d be very happy if you contribute it back to the main code base! The easiest
way to do so is to create a pull request on our GitHub repository.

Before you do so, please squash all your changes into one single commit. Please use the test suite (see above) to check
whether your changes break any existing features. Please also run the following command to check for any code style
issues:

$ flake8 cockatiel unit_tests functional_tests

We automatically run the tests and the code style check on every pull request on Travis CI and we won’t accept any
pull requets without all tests passing.

If you add a new feature, please include appropriate documentation into your patch. If you fix a bug, please include a
regression test, i.e. a test that fails without your changes and passes after applying your changes.

Note: If the tests fail on the Travis CI server but succeed on your local machine most of the time, don’t panic. Due to
the nature of some of the functional tests, they are not completely deterministic.

Please note that we have a Code of Conduct in place that applies to all communication around the project.

2.5 Code of Conduct

2.5.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

2.5.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

2.5. Code of Conduct 11

https://help.github.com/articles/creating-a-pull-request/
https://github.com/raphaelm/cockatiel
https://davidwalsh.name/squash-commits-git

cockatiel Documentation, Release 0.0.2

2.5.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

2.5.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

2.5.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project main-
tainer at mail@raphaelmichel.de. All complaints will be reviewed and investigated and will result in a response that is
deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

2.5.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-
covenant.org/version/1/4/

12 Chapter 2. Documentation content

mailto:mail@raphaelmichel.de
http://contributor-covenant.org
http://contributor-covenant.org/version/1/4/
http://contributor-covenant.org/version/1/4/

HTTP Routing Table

/(filename)
HEAD /(filename), 9
GET /(filename), 8
PUT /(filename), 8
DELETE /(filename), 8

/_status
GET /_status, 9

13

	Features
	Documentation content
	Using cockatiel
	Design decisions
	HTTP API
	Contribution guide
	Code of Conduct

	HTTP Routing Table

